
Scalable Mockup Experiments on Smartphones

using SmartLab

Georgios Larkou∗, Marios Mintzis‡, Panayiotis G. Andreou∗,

Andreas Konstantinidis∗ and Demetrios Zeinalipour-Yazti∗

∗Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
‡Department of Computer Science, University College London, WC1E 6BT London, UK

glarkou@cs.ucy.ac.cy; marios.mintzis.14@ucl.ac.uk; {panic, akonstan, dzeina}@cs.ucy.ac.cy

Abstract—In this paper we present a comprehensive architec-
ture to carry out experimental repeatability studies on clusters
of smartphones. Our architecture is founded on SmartLab

1, our
in-house architecture for managing real and virtual smartphones
via an intuitive Web user interface. Our presented architecture
consists of several exciting components for re-programming and
instrumenting smartphones to perform application testing and
data gathering in a facile manner, as well as executing mockup
experiments by “feeding” the devices with GPS/sensor readings.
We will particularly demonstrate the various components of our
architecture that encompasses smartphone sensor data collected
by mobile users and organized in our distributed NoSQL doc-
ument store. The given datasets can then be replayed on our
testbed comprising of real and virtual smartphones accessible
to developers through our Web 2.0 user interface. We present
the applicability of our architecture through various mockup
experiments over different application scenarios.

Index Terms — mockups, testbeds, mobiles, software testing.

I. INTRODUCTION

The continuous improvements of smartphone devices and
embedded sensor systems during the past decade have enabled
researchers to explore complex interdisciplinary areas (e.g.,
behavioral sciences, social sciences) from the big data per-
spective. This facilitates understanding of the physical world
at an extremely high fidelity and interpretation of real-life
problems by analyzing individual behavior through mobility,
communication and interaction patterns. The latter patterns can
be obtained from modern smartphone devices that continuously
provide more efficient means for big data generation through
their enhanced computing and multi-sensing capabilities.

Smartphone users are constantly moving and sensing thus
generating large amounts of data contributing to the evolu-
tion of new services and applications [1], also known as
crowdsourcing, which is gradually becoming the prevalent
mean of data gathering. Re-programming smartphones and
instrumenting them for application testing and data gathering
at scale is currently a tedious, time-consuming process that
poses significant logistical challenges.

To this end, we have implemented SmartLab [2], a com-
prehensive architecture for managing a cluster of both Android
Real Devices (ARDs) and Android Virtual Devices (AVDs),
which are managed via an intuitive web-based interface. Our
current architecture is ideal for repetition of scenarios that
require fine-grained and low-level control over real smart-
phones [3], [4], e.g., OS, Networking, DB and storage, security,

1Available at http://smartlab.cs.ucy.ac.cy/

Fig. 1. An example mockup experiment in SmartLab, where a user
feeds real smartphones with sensor readings from a big-data store and

overviews the results through a Web 2.0 User Interface.

peer-to-peer protocols, but also for scenarios that require the
engagement of physical sensors and geo-location scenarios.

SmartLab has been inspired by PlanetLab [5], which has
pioneered global research networks; MoteLab [6], which has
pioneered sensor network research and Amazon Elastic Com-
pute Cloud (EC2). None of the aforementioned efforts focused
on smartphones and thus those testbeds had fundamentally
different architectures and desiderata. SmartLab’s current hard-
ware consists of over 40 Android devices that are connected
through a variety of means (i.e., wired, wireless and virtual)
to our private cloud (datacenter).

Through an intuitive web-based interface, users can upload
and install Android executables on a number of devices con-
currently, capture their screen, transfer files, issue UNIX shell
commands, perform mockup experiments by “feeding” the
devices with GPS/sensor readings from big data repositories
and many more exciting features that will be demonstrated
during the conference.

In the context of smartphones, a mockup refers to the pro-
cess of extending or “feeding” an AVD’s or ARD’s particular
sensor or GPS receiver with custom values as well as support-
ing the addition of sensors that may not exist in the hardware
of a particular ARD (e.g., NFC). In order to support both GPS
and other sensor mockups (e.g., accelerometer) in SmartLab on
both ARDs and AVDs, we opted for a custom module, coined



+

D++=++!++5++C++2++!++a+

```+P*/-*+@+5/*/&-%H/-*+

9CCED+@+`DD+

a+Q+G++:+!+C+!++:a+++

!+2+G+J+5+Q+C+9+=+D+

5+A+E+J+D+Q+C+J+5+i+

E-(;$4$)?+>-(04T

%()B-$36B/4+4&B&+

E-(;$4$)?++

J"/)D(6-%/+!#?(-$BH.*+

P*/-+Q)B/-d&%/+MPQO+2&I/-+

:/;$%/+D/-;/-+M:DO+2&I/-+

+&,"-&*."($/0*1+.2*34%#5#6*

7'8#"48*9&%/:*;#48:&*179;2*

!CE+

Fig. 2. The major components of the extended SmartLab Architecture
involved in carrying out big data experiments.

the Remote Mockup (RM) Library that we plan to demonstrate
during the conference. Figure 1, shows an example scenario
where a user feeds nine reserved smartphones with sensor data
input (i.e., accelerometer, orientation, gyroscope).

II. SMARTLAB TESTBED ARCHITECTURE

In this section, we summarize the main architectural
components of the SmartLab testbed and show how these
can facilitate efficient and effective experiments that utilize
different algorithms, big data repositories and heterogeneous
devices. We start out by briefly presenting a high level view of
SmartLab’s infrastructure: i) the Hardware layer; ii) the Device
Server (DS) layer and administrative tools; and iii) the User
Interface (UI) and Data Layers. We then move on to the spe-
cialized components that facilitate big data experiments: iv) the
Algorithms repository; v) the Big Data Repository; and finally
vi) the Remote Mockup (RM) Library. Figure 2 illustrates a
high-level view of SmartLab’s architecture and highlights the
required components for big data experimentation.

A. Hardware Layer and Supported Connection Modalities

SmartLab consists of several Android Real Devices
(ARDs) and Android Virtual Devices (AVDs), constructed
using tools in the Android SDK (e.g., android create avd,
mksdcard). Additionally, it supports a variety of connection
modalities: most of the devices are directly connected to our
datacenter in ARD-Local mode, utilizing USB hubs, but more
smartphones are also connected using the ARD-Remote mode
(i.e., WiFi/3G). This mode is particularly promising for scaling
the testbed outside our department (e.g., ARD-Internet mode,
where latencies span beyond 100ms.)

B. Device Server (DS) Layer and Administrative Tools

The Device Server (DS) is a complete Linux OS image hav-
ing the SmartLab subsystems and ADB installed. Each DS is
also equipped with a local web server, which is responsible to
host the administrative tools required for maintenance purposes
similarly to routers and printers. More specifically, SmartLab
supports a variety of administrative tools: i) A “wipe” tool,
which is able to simultaneously “factory reset” a number of
ARD-Local or AVD devices; ii) A “backup” tool, which is
able to simultaneously backup all settings, applications and
files from an ARD-Local or AVD device and store them in a

!"#$%&"'()"%

!*+%

!,%

!-.%

!.%

!&+%

&/$/%

./#/0"%&"'()"%

Fig. 3. The SmartLab User Interface provides a set of tools that facilitates
efficient and effective experimentation on smartphone devices.

distributed file system; and iii) A “restore” tool, which is able
to restore all settings, applications and files from a backup file
(.ab) to a number of supported target devices simultaneously.

C. User Interface (UI) and Data Layers

SmartLab implements several modes of user interaction
with connected devices using either websocket-based inter-
actions, for high-rate utilities, or AJAX-based interactions
for low-rate utilities. Figure 3 presents a variety of user
interaction modes available through the intuitive user interface.
In particular, SmartLab supports: i) Remote Control Terminals
(RCT), a websocket-based remote screen terminal that mim-
ics touchscreen clicks and gestures; ii) Remote Shells (RS),
a websocket-based shell enabling a wide variety of UNIX
commands issued to the Android Linux kernels of allocated
devices; iii) Remote File Management (RFM), an AJAX-based
terminal that allows users to push and pull files to the devices;
iv) Remote Mockup (RM), a websocket-based remote mockup
tool that allows to record sensor readings and GPS instances
from a device and enables the replication of the pre-recorded
session to a different device or group of devices; v) Remote
Debug Tools (RDT), a websocket-based debugging extension to
the information available through the Android Debug Bridge
(ADB); and vi) Data Manager (Data), an AJAX-based file
manager that allows users to upload and store big files to
their home directory or download experimental results to their
personal devices for further analysis.

D. Algorithms Repository

The Algorithm Repository stores a variety of open source
and in-house developed algorithms (e.g., localization, crowd-
sourcing, p2p) for smartphone devices. The majority of these
algorithms are packaged as stand-alone libraries (i.e., jar files)
that can be used in the context of any experiment conducted
using SmartLab. Documentation for each library is provided
by its developer and located within the library file.

In the context of this demonstration, the Algorithm Reposi-
tory will provide the Indoor Positioning algorithms2. SmartLab
will facilitate easy integration of the data in a time-conserving
deployment manner throughout the demonstration.

2Available under “Code” tab at http://dmsl.cs.ucy.ac.cy



Virtual Machine 2

Storage
Storage

Storage

Data 

Server

Management 

Server

Virtual Machine 3

Storage
Storage

Storage

Data 

Server

Management 

Server
Virtual Machine 1

Storage
Storage

Storage

Data 

Server

Management 

Server

Smartphone 1

Local 

Storage

SmartLab

Big Data repositoryApp

Window

Smartphone 2

Local 

Storage
App

Smartphone X

Local 

Storage
App

getBlock

Fig. 4. Big Data Repository Deployment Architecture: SmartLab’s big
data repository is hosted by a coordinator couchbase management server
virtual machine and two couchbase data servers virtual machines. It supports
smartphone app query requests (getChunk) for data between two time
instances via the getBlock view.

E. Big Data Repository

SmartLab employs a unified big data repository infrastruc-
ture in order to maintain multiple databases or files that can be
utilized in experiments on smartphone devices. The repository
employs mechanisms that promote easier experimentation both
at the cluster-level as well as the smartphone-level. The big
data repository architecture is illustrated in Figure 4.

The data repository is currently located for distribution over
a closed departmental network and has been used for storing
data collected from research experiments (e.g., collecting own
WiFi RSS data on campus [7], sensor data utilized by the
Remote Mockup Library described next in Subsection II-F).

Generally, the given store can be utilized to store billions
of sensor readings stored in a document-oriented format that
allow a researcher to test an algorithm or application using tens
or hundreds of smartphone devices using automated scripts,
similarly to [8], but with more extensive data traces. Since
each sensor recording might store millions of modeled entries
without complex relational constraints, we adopted a NoSQL
database that provides simplicity of design, horizontal scaling
and better control of availability. We decided to use Couchbase
2.1.1 Community edition as our NoSQL database since it pro-
vides all aforementioned advantages over a relational database
and it is able to accommodate unstructured JSON objects.
Another advantage of Couchbase is the already built-in object-
level cache, coined Memcache, which provides the ability to
store and serve most frequent and recent queries immediately
from the main memory (RAM) without the need of retrieving
the results from the disk.

F. Remote Mockup (RM) Library

A mockup provides part of a system’s functionality en-
abling testing of a design. As mentioned before, in the context
of Android, mockups refer to the process of extending an
AVD’s or ARD’s particular sensor or GPS with custom values.
Additionally, one important benefit of mockups is that these
can support the addition of sensors that may not exist in the
hardware of a particular ARD (e.g., NFC, WiFi Direct).

{

’phone_id’: ’SH0APPL00803’

’user_id’ : ’smartlab’

[

{

’t’ : ’1391198355678’,

’s’ : ’proximity’,

’v’ : 0

},

{

’t’ : ’1391198355678’,

’s’ : ’accelerometer’,

’v’ : [’9’,’1.23’,’4.65’]

},

{

’t’ : ’1391198355678’,

’s’ : ’rotation rate’,

’v’ : [’0’,’0’,’0’]

},

{

’t’ : ’1391198355678’,

’s’ : ’orientation’,

’v’ : [’31’,’6’,’60’]

},

{

’t’ : ’1391198355678’,

’s’ : ’rotation vector’,

’v’ : 0

},

]

}

{

’t’ : ’1391198355678’,

’s’ : ’light’,

’v’ : 0

},

{

’t’ : ’1391198355678’,

’s’ : ’gyroscope’,

’v’ : [’0’,’0’,’0’]

},

{

’t’ : ’1391198355680’,

’s’ : ’gravity’,

’v’ : [’0’,’0’,’0’]

},

{

’t’ : ’1391198355678’,

’s’ : ’magnetic field’,

’v’ : [’-42.76’,’27.27’,

’-8.58’]

},

{

’t’ : ’1391198355678’,

’s’ : ’temperature’,

’v’ : 0

},

]

}

Fig. 5. Sensor/GPS Mockup (RM): (left, center) A data trace of various
sensor measurements encoded in JSON. The given file can be loaded to
ARDs and AVDs through this subsystem; (right) An application built with
SLSensorManager using the measurements.

In order to support both GPS and other sensor mockups in
SmartLab (e.g., accelerometer, compass, orientation, temper-
ature, light, proximity, pressure, gravity, linear acceleration,
rotation vector and gyroscope sensors), we opted for a custom
module coined the Remote Mockup (RM) Library. Our RM
library establishes a socket server on DS feeding devices with
sensor or GPS readings encoded in JSON format and stores
them in a NoSQL repository. A sample of a constructed
JSON object is depicted in Figure 5. As this functionality
is completely outside the ADB interaction stream, we were
required to provide each application with a custom library,
coined SLSensorManager.jar.

The RM library can be embedded to any android appli-
cation enabling interaction with the SmartLab GPS/Sensor
subsystem running on DS. In fact, our library has precisely
the same interface with the Android SDK SensorManager and
consequently a user can override Android’s default behavior
as shown next.

• Request Internet permission in the App Manifest:

<uses-permission android:name=

"android.permission.INTERNET"/>

• Instead of invoking the default SensorManager use:

mSensorManager = SLSensorManager.

getSystemService(this, SENSOR_SERVICE);

• Connect to the SmartLab’s Remote Mockup using:

mSensorManager.connectSimulator();

With Android Tools r18 and Android 4.0, developers have
the opportunity to redirect real sensor measurements, produced
by the ARDs, to the AVDs for further processing. It is
important to mention that this functionality is the reverse of
what we are offering. In our case, we want to be able to redirect
data from a NoSQL repository to an ARD, such that a given
experiment on ARDs or AVDs uses a data stream to drive its
sensors.



III. MANAGING BIG DATA EXPERIMENTATION ON

SMARTPHONES

Smartphones are not able to accommodate large amounts
of data because of hardware/software limitations. For example,
an Android application limits the amount of main memory
an application can use between 16MB (e.g., HTC Desire) to
48 MB (e.g., Nexus 7). This is very limiting as nowadays
smartphones can produce enormous amount of data each day;
if a developer desires to log the measurements of 8 sensors
for a single day every 100ms, this will produce approximately
993 MB of data (i.e., 10 readings/sec × 1206 Bytes × 60 sec
× 60 min × 24 hours). However, the real problem lies in the
ability to replay an existing log trace to another smartphone
for experimental purposes.

Assume that we would like to perform an experiment that
stores a sensor reading every millisecond and our Android
device can only store 16 MB of data. This means that we
can replay only about 14 seconds (13911ms) of the initial
recording at once. Even if the experiments allow to sacrifice
accuracy (e.g., record an instance every 100ms instead of every
1ms), this would again limit our playback time to 1400s (i.e.,
23 minutes).

Furthermore, the authors in [9] show that utilizing flash
storage severely hampers application performance between
100% to 300% and in some extreme cases even by 2000%.
Consequently, utilizing local storage for storing the aforemen-
tioned sensor readings and then retrieving them for application
usage should be avoided as it can lower overall application
performance, consume more energy and negatively affect ex-
periment exact repetition.

In order to overcome the aforementioned limitation and en-
able the repeatability of ideally “unlimited” sizes of recordings,
we have developed a “sliding window” mechanism over the
sensor data stream. This mechanism enables requesting only
chunks of data from the datastore using a variety of in-house
developed views (e.g. getBlock, getChunk and more).
Figure 4 presents a simplified version of the implemented
technique. Our previous work [10] provides a more detailed
analysis and a set of experiments is presented in order to
illustrate how SmartLab can facilitate, automate and simplify
the process of big data experimentation on smartphones.

IV. DEMONSTRATION SCENARIO

Interactive: We will start our demonstration out by over-
viewing the main components of SmartLab. We shall then
present the complete interaction workflow, i.e., allocate de-
vices, transfer files to remotely connected devices and ini-
tiate/control demonstration programs utilizing our internally
developed modes of user interaction (RFM, RCT, RDT, RS and
RM). More specifically, we plan to demonstrate how somebody
can test both widely known applications available through
the Android market and interesting applications that we have
developed in-house for crowdsourced trajectory matching [4],
crowdmessaging applications, fine-grained indoor localization,
peer-to-peer search [3] and others.

Trace-driven: We will provide pre-recorded sensory readings
and a prototype application in order to demonstrate the Remote
Mockup (RM) library. Moreover, we will provide a prototype

application with recording functionality in order to demon-
strate how a user is able to record sensory readings through
SmartLab. The trace-driven demonstration of SmartLab will
utilize a pre-configured Couchbase bucket hosted by two
Couchbase servers with 512MB of Memcached each (i.e., 1GB
in total). The two servers can accommodate up to 6TBs of
data on top of our infrastructure that encompasses over 16TB
of RAID-5 / SSD storage. The data store uses 1206 bytes for
storing one instance of 8 sensors readings in JSON format
along with a UNIX timestamp and a username associated to
the SmartLab account of the user who initiated the recording,
similar to Figure 5. Finally, we will present a complete tutorial
on how the RM library can be integrated into an existing
Android application and mock pre-recorded sensory readings
to the Android application, similar to Figure 1.

ACKNOWLEDGMENTS

This work was financially supported by the last author’s startup
grant, funded by the University of Cyprus. It has also been
supported by MTN Cyprus, EU’s COST Action IC903 and
IC1304, EU’s FP7 MODAP project and EU’s FP7 Planetdata
NoE.

REFERENCES

[1] Georgios Chatzimiloudis, Andreas Konstantinidis, Christos Laoudias
and Demetris Zeinalipour-Yazti, “Crowdsourcing with Smartphones.”
Internet Computing, IEEE, 36-44, Sept.-Oct. 2012.

[2] Georgios Larkou, Constantinos Costa, Panayiotis G. Andreou, Andreas
Konstantinidis and Demetrios Zeinalipour-Yazti. “Managing Smartphone

Testbeds with Smartlab”, In Proc. of the 27th Intl. Conference on Large
Installation System Administration (LISA’13), USENIX Association,
115-132, 2013.

[3] Andreas Konstantinidis, Demetrios Zeinalipour-Yazti, Panayiotis G. An-
dreou, Panos K. Chrysanthis, and George Samaras. “Intelligent Search in

Social Communities of Smartphone Users”, In Distributed and Parallel
Databases, Springer US, 115-149, 2013.

[4] Demetrios Zeinalipour-Yazti, Christos Laoudias, Costantinos Costa,
Michalis Vlachos, Maria I. Andreou, and Dimitrios Gunopulos. “Crowd-

sourced Trajectory Similarity with Smartphones”, IEEE Trans. on Knowl.
and Data Eng. 25, 6 (June 2013), 1240-1253, 2013.

[5] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe.
“A Blueprint for Introducing Disruptive Technology into the Internet”,
A blueprint for introducing disruptive technology into the Internet.
SIGCOMM Comput. Commun. Rev. 33, 1 (January 2003), 59-64, 2003.

[6] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. “Mote-

Lab: a wireless sensor network testbed”, In Proc. of the 4th Intl.
Symposium on Information Processing in Sensor Networks, IPSN’05.
IEEE Press, Article 68, 2005.

[7] Christos Laoudias, George Constantinou, Marios Constantinides,
Silouanos Nicolaou, Demetrios Zeinalipour-Yazti, and Christos G.
Panayiotou. “The Airplace Indoor Positioning Platform for Android

Smartphones”, In Proceedings of the 13th IEEE International Conference
on Mobile Data Management (MDM’12), IEEE Computer Society, 312-
315, 2012.

[8] Tim Verry. “MegaDroid simulates network of 300,000 Android smart-

phones”, Extremetech.com, Oct 3, 2012. http://goo.gl/jMaS8.

[9] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. “Revisiting storage

for smartphones”, In Proceedings of the 10th USENIX conference
on File and Storage Technologies (FAST’12). USENIX Association,
Berkeley, CA, USA, 17-31, 2012.

[10] Georgios Larkou, Marios Mintzis, Panayiotis G. Andreou, Andreas
Konstantinides, Demetrios Zeinalipour-Yazti. “Managing big data exper-

iments on smartphones”, In Distributed and Parallel Databases, Springer
US, 1-32, 2014.


